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A systematic and simple method to find the correlation function of the Abelian sandpile model
up to any finite order is developed. In addition, an algorithm for evaluating the distribution function
of the avalanche size P(s) exactly is also discovered along the same line. This method is, in general,
more efficient (and accurate) than the numerical simulation that is currently used in obtaining P(s).
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Much work has been done to understand the nature
of temporal and spatial scaling in some physical systems
without fine-tuning parameters since the introduction of
the concept of self-organized criticality by Bak, Tang, and
Wiesenfeld [1]. Later on, Dhar pointed out that the finite
cellular-automata type of model with toppling triggered
by local height can be described by a finite Abelian group
[2]. Models of this type are now collectively known as the
Abelian sandpile models (ASM’s). Both the total number
of self-organized critical states and the two-point corre-
lation function can be calculated exactly in these mod-
els [2,3]. Furthermore, various other physical quantities
of ASM’s are found [4]. Extension of the ASM, whose
toppling is triggered by local height, to other triggering
conditions of toppling can be found elsewhere [5,6]. Re-
cently, the relation between the ASM, percolation, and
spanning trees is also explored [7].

In this Rapid Communication, I would like to intro-
duce an exact and efficient algorithm for calculating the
correlation function up to any finite order for the ASM.
Thus the distribution function of avalanche sizes can be
found exactly in this model.

An Abelian sandpile model consists of a finite number
of cells (labeled %), and integers (or sometimes real num-
bers) called local heights (labeled h;) are assigned to each
of the cells. We denote the total number of cells by N in
the forthcoming discussions. A unit amount of particles
is added to the cells randomly, according to a prescribed
probability distribution (7). Whenever the local height
of a cell j is greater than a fixed triggering level, particles
have to be redistributed in the next time step according
to the rule (called the toppling rule),
This process is called toppling. The requirements and
properties of the toppling matrix A can be found else-
where [2,3]. As pointed out by Dhar, the total number of
self-organized critical states in an ASM is given by det A.
In the event that the local heights h; are real numbers,
det A can be interpreted as the volume of the phase space
of the recurrence states [5,6]. In addition, the two-point
correlation function Gj;, which is the average number of
topplings occuring in the cell j due to a particle added
onto cell ¢ in an avalanche, is given by G;; = Ai“jl [2].
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One of the goals of this paper is to extend this result up
to any finite number of cells involved.

Let us denote the average number of toppling at cell
7, given that a particle is added onto cell ¢ and that cell
k does not topple during the avalanche, by Gijjk- Then
it is given by

[Ade(k)] ij
det A )

whenever k # i, and k # j. Here Ay denotes the (N —
1) x (N — 1) matrix formed by removing the column &
and row k of A, and Adj denotes the adjoint of a matrix.

Gijlk =

The proof of the above assertion follows directly from
the following observation: a digraph, called the induced
graph, is formed by taking each cell as a vertex, and an
arrow is drawn from vertex 4 to another vertex j(# 1),
provided that A;; # 0 [6]. Let us consider a new digraph
by removing the vertex k and all the edges pointing to
or away of k. The toppling matrix associated with this
new graph is therefore A(). Clearly, there is a one-to-
one correspondence between the avalanches occurring in
the new system (with A(x)) and the old one (with A), in
which & is not involved and hence not toppled. However,
the total number of self-organized critical states in the
new system is det A(x) instead of det A. Thus, G,;; =

det A(k)Aacl) i;/ det A and so Eq. (2) is true.

By removing any finite number of rows and the corre-
sponding columns in the toppling matrix A, we can cal-
culate the corresponding higher-order correlation func-
tions for the rest of the cells in a similar way. Moreover,
all the correlation functions up to any finite order of the
ASM can be found by means of a similar iteration. For
example, the three- and four-point correlation functions
can be found using the following relations in conjunction

Gijlk = G.ij - Gij|E’ (3&)
Gk = Gijik — Gijlrny (3b)
and
Gijlkt = Gijlk = Gijts (3¢)
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where Gj|;, is the average number of toppling occurring
in cell 7, given that a particle is added in cell ¢ and cell
k topples, and similarly for Gy and Gy

Show the probability of cell j toppling, given that a
particle is added onto cell ¢ by P;(j). In general, P;(j) <
G;j, because a cell may topple more than once in an
avalanche, and hence the equality holds if and only if the
cell j topples exactly once in every avalanche involving
it. Let us consider another Abelian sandpile system with
the toppling matrix A given by

X 0 if p=j and j
A”":{qu p=jandg#j @

otherwise,

that is, we remove all the out-going edges from the cell
7 in the induced graph. By simple counting, it is easy
to see that there is a one-to-one correspondence between
the self-organized critical states of these two systems, to
which cell j does not topple when a particle is added to
cell i. Thus the total number of self-organized critical
states with cell 7 not toppled, given a particle is added
to cell 4, is the same for the two systems (with toppling
rules given by A and A, respectively) above. So the
probabilities P;(5) and P;(j) of these two systems are in-
versely proportional to their corresponding numbers of
self-organized critical states. In addition, the probability
P;(j) is unchanged upon elementary row operations on
A not involving the row vector representing the toppling
rule of cell j. The reason is simple: the number of self-
organized critical states (or the recurrence phase-space
volume) is unchanged by elementary row operations. In
addition, those operations not involving cell j can only
affect the mode of transient particle transport of cells
not involving j. So the particle eventually coming into
cell j via toppling remains unchanged. So our claim is
justified. Further discussions of the role of elementary
row operations on the ASM and the equivalence of top-
pling rules can be found elsewhere [2,8]. Using the above
procedure, which is similar to the Gaussian elimination,
we can always reduce the toppling matrix A uniquely to
a new one A’ with the only (possible) nonzero elements
being those in the diagonal and in the column vector cor-
responding to the strength of the edges pointing to j in
the induced graph of A’. Hence the induced graph of A’
is a forest. If —Aj; > Al it takes, in general, more than
one toppling in j in order that j can release all the excess
particles that have moved into it due to the instability in
i. However, if we define A}; by

Al = max (A, ~A,) (®)
then it is easy to check that cell j can topple at most
once in an avalanche. Thus G7; = (A"=1);; = P/'(§) and
hence P;(j) is given by

det A”

G = (Ade”)ij
det A

Pl(]) = ij det A (6)

So P;(5) = 1— P,(5), the probability that j does not top-
ple, given a particle is added to cell i, can be found.
Inductively, we can apply a similar procedure to find
P,(51,-..,Jm) for any distinct j1,...,jm and is given by
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P;(G1s-- > m)

p—1

1 « X Az
-1 mpz::l [(AdJA)ijp H (1 - Aijzl)] » (1)

=1

where A is obtained by first removing all the outgoing
edges of j, and then transforms by means of elementary
row operations to the form where all A;; = 0 when-
ever k & {j1,...,Jm}. Finally, the elements in A;;, are
checked to comply with the constraint in the form of
Eq. (5). In fact, the product in the second term of Eq. (7)
is the probability that the cells ji, jo, ..., jp—1 do not top-
ple under the toppling rules of A, and so using the same
argument it is not difficult to see that the second term
of Eq. (7) is the probability that at least one of the cells
1,72, . .-, Jm topples when a particle is added to cell 1,
with the toppling matrix given by A.

With the aid of the P;(j1,...,7k), all the probability
functions up to any finite order of the ASM can be found
by means of iteration. For example,

Pi(j) =1 - Pi(5), (82)
Pi(jk) = Py(k) — P:(jk), (8b)
Pi(jk) = P,(j) — Pi(5k). (8¢)

Let us define an avalanche size as the total number
of cells that topple during an avalanche, and those that
topple more than once only count once. Then it is
straightforward to show that the probability of having
an avalanche of size s, given that a particle is added to
cell 4, P;(s), is given by

k
QN —k) = N79Ck_¢Pi(a) 9
q=0

for k=0,1,...,N, where N is the total number of cells
of the ASM, and Q;(k) is given by
Qi(k) =Y P(G1,---, k) (10)
where the sum is over all the distinct combinations of
any k of the N cells. Actually Eq. (9) follows from
the simple combinatorial argument as follows: clearly
avalanches involving more than k cells do not contribute
to Eq. (10). Moreover, for an avalanche involving ¢ cells
(g =0,1,...,k), the sum in Eq. (10) counts this event
N-4Cy_, times. So Eq. (9) is valid. In fact, it can be re-
garded as a matrix equation, so that P;(m) can be solved
by backward substitution. If ;(i) denotes the probability
of adding a particle to cell 4, the probability of having an
avalanche of size m is given by P(m) = >, u;P;i(m).
Approximately N arithmetic operations are involved
in finding P;(k) from Q;(N — k), ~ NCj operations
in finding Q;(k) from its summand P;(jy,...,Jjx), and
finally ~ k* operations in finding P;(j1,...,/%) from
the toppling matrix A. Therefore the total operation
count of the finding of P(m) = Y, u(3)P;(m) scales as



47 ABELIAN SANDPILE MODEL

N2 NCyk? =~ N2V, where N is the total number of
cells. It is expected that the total number of recurrence
states det A of a system scale as ¢V for some ¢ > 0 [7]. So
the operation count used to obtain sz,n) by direct com-
puter simulation should scale as Nt¢N ~ N3¢V, where
t is the average time elapse for an avalanche. As soon
as ¢ > 2, which is almost always the case, the algorithm
we have proposed here will be more efficient than that of
computer simulation.

Finally, it should be noted that there are redundant
terms in the evaluation of Q;(k) by means of Eq. (10).
Clearly, the cells involved in an avalanche form a perco-
lating animal of the induced graph (note, however, that
the converse is not true in general). Therefore, we can
accelerate the process by counting in Eq. (9) and by sum-
ming only over those configurations where the cells that
are allowed to topple in an avalanche form a percolating
animal in the induced graph. So Eq. (9) can be modified
to

k
- 1
Qi(N — k) = gi(k) qz:f) W'Pi(Q) (11)

for k =0,1,..., N, where g(q) (¢ > 1) is the number of
percolating animals of the induced graph, starting from
cell ¢ with size ¢, ¢:(0) = 1, and Q;(k) is defined by
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éi(k)=zlﬂ(317“-73k), (12)

where the prime sum is over all the combinations of
J1y- -+, Jk, With the remaining cells forming a percolating

animal starting from the cell ¢ for the induced graph. It
can be shown that g(k) cannot grow faster than exp(ak)
for some o > 0 as k — oo [9]. If the induced graph is a
subset of a regular finite-dimensional lattice, we expect
that g(k) ~ k® for some o > 1; thus the total number
of arithmetic operations involved scales as a power law
of N, which is a very efficient way to calculate P;(k) and
hence P(k) either analytically or numerically without us-
ing computer simulation.

In this Rapid Communication, we have developed a
systematic method to calculate all the correlation func-
tions up to any finite order of any Abelian sandpile
model. In a similar way, the conditional probability of
any finite number of sites being (or equivalently not be-
ing) toppled is also found. An efficient algorithm for eval-
uating the distribution of avalanche size P(s) is therefore
discovered. Numerical work on a specific model is under-
way.
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